Cymthial Young
 ALGEBRA \&

 TRIGONOMETRY

 TRIGONOMETRY}

3rd Edition

WileyPLUS

WileyPLUS is a research-based online environment for effective teaching and learning.

WileyPLUS builds students' confidence because it takes the guesswork out of studying by providing students with a clear roadmap:

- what to do
- how to do it
- if they did it right

It offers interactive resources along with a complete digital textbook that help students learn more. With WileyPLUS, students take more initiative so you'll have greater impact on their achievement in the classroom and beyond.

WileyPLUS

 0000000000008
ALL THE HELP, RESOURCES, AND PERSONAL SUPPORT YOU AND YOUR STUDENTS NEED!

www.wileyplus.com/resources

1st
 DAY OF
 CLASS AND BEYOND!

2-Minute Tutorials and all of the resources you and your students need to get started

WileyPLUS

Quick

Start

WileyPLUS

Student Partner
Program

Student support from an experienced student user

Wiley Faculty Network

Collaborate with your colleagues, find a mentor, attend virtual and live events, and view resources www.WhereFacultyConnect.com

Your WileyPLUS Account Manager, providing personal training and support

Algebra and Trigonometry

Algebra and Trigonometry

Third Edition

Cynthia Y. Young | Professor of Mathematics
University of Central Florida

Wiley
PUBLISHER
ACQUISITIONS EDITOR
PROJECT EDITOR
ASSOCIATE CONTENT EDITOR
EDITORIAL ASSISTANT
SENIOR PRODUCTION EDITOR
DESIGNER
OPERATIONS MANAGER
ILLUSTRATION EDITOR
SENIOR PHOTO EDITOR
COVER DESIGN
COVER PHOTO

Laurie Rosatone
Joanna Dingle
Jennifer Brady
Beth Pearson
Elizabeth Baird
Kerry Weinstein/Ken Santor
Madelyn Lesure
Melissa Edwards
Sandra Rigby; Electronic illustrations provided by Techsetters, Inc.
Jennifer MacMillan
Madelyn Lesure
Front Cover: Combined image: Ty Milford/Masterfile and Leslie Banks/iStockphoto
Back Cover: Rustem Gurler/iStockphoto

"Modeling Our World" image: © David Woodfall/Getty Images

This book was set in 10/12 Times by MPS Limited, and printed and bound by Quad/Graphics, Inc.
The cover was printed by Quad/Graphics, Inc.
This book is printed on acid free paper. ∞

Founded in 1807, John Wiley \& Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2013, 2009, 2006 John Wiley \& Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-0-470-64803-2
BRV ISBN: 978-1-118-12930-2

Printed in the United States of America

The Wiley Faculty Network (WFN) is a global community of faculty connected by a passion for teaching and a drive to learn, share, and collaborate. Whether you're seeking guidance, training, and resources or simply looking to re-energize your course, you'll find what you need with the WFN. The WFN also partners with institutions to provide customized professional development opportunities. Connect with the Wiley Faculty Network to collaborate with your colleagues, find a Mentor, attend virtual and live events, and view a wealth of resources all designed to help you grow as an educator.

Attend

Discover innovative ideas and gain knowledge you can use.

Learn from instructors around the world, as well as recognized leaders across disciplines. Join thousands of faculty just like you who participate in virtual and live events each semester. You'll connect with fresh ideas, best practices, and practical tools for a wide range of timely topics.

View

Explore your resources and development opportunities.

See all that is available to you when you connect with the Wiley Faculty Network. From Learning Modules and archived Guest Lectures to faculty-development and peer-reviewed resources, there is a wealth of materials at your fingertips.

Collaborate

Connect with colleagues-your greatest resource.

Tap into your greatest resource-your peers. Exchange ideas and teaching tools, while broadening your perspective. Whether you choose to blog, join interest groups, or connect with a Mentor-you've come to the right place!

Wiley Faculty Network

Embrace the art of teaching - Great things happen where faculty connect!

Web: www.WhereFacultyConnect.com
EMAIL: FacultyNetwork@wiley.com
PHONE: I-866-4FACULTY (I-866-432-2858)

For Christopher and Caroline

About the Author

Cynthia Y. Young is a native of Tampa, Florida. She currently is a Professor of Mathematics at the University of Central Florida (UCF) and the author of College Algebra, Trigonometry, Algebra and Trigonometry, and Precalculus. She holds a B.A. degree in Secondary Mathematics Education from the University of North Carolina (Chapel Hill), an M.S. degree in Mathematical Sciences from UCF, and both an M.S. in Electrical Engineering and a Ph.D in Applied Mathematics from the University of Washington. She has taught high school in North Carolina and Florida, developmental mathematics at Shoreline Community College in Washington, and undergraduate and graduate students at UCF. Dr. Young's two main research interests are laser propagation through random media and improving student learning in STEM. She has authored or co-authored over 60 books and articles and been involved in over $\$ 2.5 \mathrm{M}$ in external funding. Her atmospheric propagation research was recognized by the Office of Naval Research Young Investigator award, and in 2007 she was selected as a Fellow of the International Society for Optical Engineers. She is currently the co-director of UCF's EXCEL program whose goal is to improve the retention of STEM majors.

Although Dr. Young excels in research, she considers teaching her true calling. She has been the recipient of the UCF Excellence in Undergraduate Teaching Award, the UCF Scholarship of Teaching and Learning Award, and a two-time recipient of the UCF Teaching Incentive Program. Dr. Young is committed to improving student learning in mathematics and has shared her techniques and experiences with colleagues around the country through talks at colleges, universities, and conferences.

Dr. Young and her husband, Dr. Christopher Parkinson, enjoy spending time outdoors and competing in Field Trials with their Labrador Retrievers. Laird's Cynful Wisdom (call name "Wiley") is titled in Canada and currently pursuing her U.S. title. Laird's Cynful Ellegance (call name "Ellie") was a finalist in the Canadian National in 2009 and is retired (relaxing at home).

Dr. Young is pictured here with Ellie's 2011 litter of puppies!

Bonnie Farris

Preface

As a mathematics professor I would hear my students say, "I understand you in class, but when I get home I am lost." When I would probe further, students would continue with "I can't read the book." As a mathematician I always found mathematics textbooks quite easy to read-and then it dawned on me: don't look at this book through a mathematician's eyes; look at it through the eyes of students who might not view mathematics the same way that I do. What I found was that the books were not at all like my class. Students understood me in class, but when they got home they couldn't understand the book. It was then that the folks at Wiley lured me into writing. My goal was to write a book that is seamless with how we teach and is an ally (not an adversary) to student learning. I wanted to give students a book they could read without sacrificing the rigor needed for conceptual understanding. The following quote comes from a reviewer of this third edition when asked about the rigor of the book:

> I would say that this text comes across as a little less rigorous than other texts, but I think that stems from how easy it is to read and how clear the author is. When one actually looks closely at the material, the level of rigor is high.

Distinguishing Features

Four key features distinguish this book from others, and they came directly from my classroom.

Parallel Words and Math

Have you ever looked at your students' notes? I found that my students were only scribbling down the mathematics that I would write-never the words that I would say in class. I started passing out handouts that had two columns: one column for math and one column for words. Each Example would have one or the other; either the words were there and students had to fill in the math, or the math was there and students had to fill in the words. If you look at the Examples in this book, you will see that the words (your voice) are on the left and the mathematics is on the right. In most math books, when the author illustrates an Example, the mathematics is usually down the center of the page, and if the students don't know what mathematical operation was performed, they will look to the right for some brief statement of help. That's not how we teach; we don't write out an Example on the board and then say, "Class, guess what I just did!" Instead

EXAMPLE 1 Graphing a Quadratic Function Given in Standard Form

Graph the quadratic function $f(x)=(x-3)^{2}-1$.

Solution:

Step 1 The parabola opens up.	$a=1$, so $a>0$
Step 2 Determine the vertex.	$(h, k)=(3,-1)$
Step 3 Find the y-intercept.	$f(0)=(-3)^{2}-1=8$

Skills and Concepts (Learning Objectives and Exercises)

In my experience as a mathematics teacher/instructor/professor, I find skills to be on the micro level and concepts on the macro level of understanding mathematics. I believe that too often skills are emphasized at the expense of conceptual understanding.
 I have purposely separated learning objectives at the beginning of every section into two categories: skills objectives-what students should be able to do; and conceptual objectives-what students should understand. At the beginning of every class I discuss the learning objectives for the day-both skills and concepts. These are reinforced with both skills exercises and conceptual exercises.

Сatch the Mistake

Have you ever made a mistake (or had a student bring you his or her homework with a mistake) and you go over it and over it and can't find the mistake? It's often easier to simply take out a new sheet of paper and solve it from scratch again than it is to actually find the mistake. Finding the mistake demonstrates a higher level of understanding. I include a few Catch the Mistake exercises in each section that demonstrate a common mistake that I have seen in my experience. I use these in class (either as a whole or often in groups), which leads to student discussion and offers an opportunity for formative assessment in real time.

Lecture Videos by the Author

To ensure consistency in the students' learning experiences, I authored the videos myself. Throughout the book wherever a student sees the video icon, that indicates a video. These videos provide a mini lecture in that the chapter openers and chapter summaries are more like class discussion and selected Examples. Your Turns throughout the book also have an accompanying video of me working out that exact problem.

New to the Third Edition

The first edition was my book, the second edition was our book, and this third edition is our even better book. I've incorporated some specific line-by-line suggestions from reviewers throughout the exposition, added some new Examples, and added over 200 new Exercises. The three main global upgrades to the third edition are a new Chapter Map with Learning Objectives, End-of-chapter Inquiry-Based Learning Projects, and additional Applications Exercises in areas such as Business, Economics, Life Sciences, Health Sciences, and Medicine. A section (2.5*) on Linear Regression was added, as well as some technology exercises on Quadratic, Exponential, and Logarithmic Regression.

Learning Objectives

LEARNING OBJECTIVES

- Find the domain and range of a function.
- Sketch the graphs of common functions.
- Sketch graphs of general functions employing translations of common functions.
- Perform composition of functions.
- Find the inverse of a function.
- Model applications with functions using variation.

Inquiry-Based Learning Projects

Applications to Business, Economics, Health Sciences, and Medicine

FEATURE

Chapter Opening Vignette

Chapter Overview, Flowchart, and Learning Objectives

Skills and Conceptual Objectives

Clear, Concise, and Inviting Writing Style, Tone, and Layout

Parallel Words and Math

Common Mistakes

Color for Pedagogical Reasons

Study Tips

Author Videos

Your Turn

Catch the Mistake Exercises

Conceptual Exercises

Inquiry-Based Learning Project

Modeling OUR World

Chapter Review

Chapter Review Exercises
Chapter Practice Test
Cumulative Test

BENEFIT TO STUDENT

Piques the student's interest with a real-world application of material presented in the chapter. Later in the chapter, the same concept from the vignette is reinforced.

Students see the big picture of how topics relate and overarching learning objectives are presented.

Skills objectives represent what students should be able to do. Conceptual objectives emphasize a higher level global perspective of concepts.

Students are able to read this book, which reduces math anxiety and promotes student success.

Increases students' ability to read and understand examples with a seamless representation of their instructor's class (instructor's voice and what they would write on the board).

Addresses a different learning style: teaching by counter-example. Demonstrates common mistakes so that students understand why a step is incorrect and reinforces the correct mathematics.

Particularly helpful for visual learners when they see a function written in red and then its corresponding graph in red or a function written in blue and then its corresponding graph in blue.

Reinforces specific notes that you would want to emphasize in class.
Gives students a mini class of several examples worked by the author.

Engages students during class, builds student confidence, and assists instructor in real-time assessment.

Encourages students to assume the role of teacher-demonstrating a higher mastery level.

Teaches students to think more globally about a topic.
Lets students discover a mathematical identify, formula, etc. that is derived in the book.

Engages students in a modeling project of a timely subject: global climate change.

Key ideas and formulas are presented section by section in a chart. Improves study skills.

Improves study skills.
Offers self-assessment and improves study skills.
Improves retention.

Instructor Supplements

Instructor's Solutions Manual (ISBN: 978-1-118-13759-8)

- Contains worked-out solutions to all exercises in the text.

Instructor's Manual

Authored by Cynthia Young, the manual provides practical advice on teaching with the text, including:

- sample lesson plans and homework assignments
- suggestions for the effective utilization of additional resources and supplements
- sample syllabi
- Cynthia Young's Top 10 Teaching Tips \& Tricks
- online component featuring the author presenting these Tips \& Tricks

Annotated Instructor's Edition (ISBN: 978-1-118-13491-7)

- Displays answers to all exercise questions, which can be found in the back of the book.
- Provides additional classroom examples within the standard difficulty range of the in-text exercises, as well as challenge problems to assess your students' mastery of the material.

PowerPoint Slides

- For each section of the book, a corresponding set of lecture notes and worked-out examples are presented as PowerPoint slides, available on the Book Companion Site (www.wiley.com/college/young) and WileyPLUS.

Test Bank

- Contains approximately 900 questions and answers from every section of the text.

Computerized Test Bank

Electonically enhanced version of the Test Bank that

- contains approximately 900 algorithmically-generated questions.
- allows instructors to freely edit, randomize, and create questions.
- allows instructors to create and print different versions of a quiz or exam.
- recognizes symbolic notation.

Book Companion Website (www.wiley.com/college/young)

- Contains all instructor supplements listed plus a selection of personal response system questions.

WileyPLUS

- Features a full-service, digital learning environment, including additional resources for instructors, such as assignable homework exercises, tutorials, gradebook, and integrated links between the online version of the text and supplements.

Student Supplements

Student Solutions Manual (ISBN: 978-1-118-13758-1)

- Includes worked-out solutions for all odd problems in the text.

Book Companion Website (www.wiley.com/college/young)

- Provides additional resources for students to enhance the learning experience.

What Do Students Receive with WileyPLUS?

A Research-Based Design

WileyPLUS provides an online environment that integrates relevant resources, including the entire digital textbook, in an easy-to-navigate framework that helps students study more effectively.

- WileyPLUS adds structure by organizing textbook content into smaller, more manageable "chunks."
- Related media, examples, and sample practice items reinforce the learning objectives.
- Innovative features such as visual progress tracking, and self-evaluation tools improve time management and strengthen areas of weakness.

One-on-One Engagement

With WileyPLUS, students receive $24 / 7$ access to resources that promote positive learning outcomes. Students engage with related examples (in various media) and sample practice items, including:

- Self-Study Quizzes
- Video Quizzes
- Proficiency Exams
- Guided Online (GO) Tutorial Problems
- Concept Questions
- Lecture Videos by Cynthia Young, including chapter introductions, chapter summaries, and selected video examples.

Measurable Outcomes

Throughout each study session, students can assess their progress and gain immediate feedback. WileyPLUS provides precise reporting of strengths and weaknesses, as well as individualized quizzes, so that students are confident they are spending their time on the right things. With WileyPLUS, students always know the exact outcome of their efforts.

What Do Instructors Receive with WileyPLUS?

WileyPLUS provides reliable, customizable resources that reinforce course goals inside and outside of the classroom, as well as visibility into individual student progress. Pre-created materials and activities help instructors optimize their time.

Customizable Course Plan

WileyPLUS comes with a pre-created Course Plan designed by a subject matter expert uniquely for this course.

Pre-Created Activity Types Include:

- Questions
- Readings and Resources
- Print Tests

Course Materials and Assessment Content

- Lecture Notes PowerPoint Slides
- Instructor's Manual
- Question Assignments (all end-of-chapter problems coded algorithmically with hints, links to text, whiteboard/show work feature, and instructor controlled problem solving help)

Gradebook

WileyPLUS provides instant access to reports on trends in class performance, student use of course materials, and progress toward learning objectives, helping inform decisions and drive classroom discussions.

Acknowledgments

I want to express my sincerest gratitude to the entire Wiley team. I've said this before, and I will say it again: Wiley is the right partner for me. There is a reason that my dog is named Wiley-she's smart, competitive, a team player, and most of all, a joy to be around. There are several people within Wiley to whom I feel the need to express my appreciation: first and foremost to Laurie Rosatone who convinced Wiley Higher Ed to invest in a young assistant professor's vision for a series and who has been unwavering in her commitment to student learning. To my editor Joanna Dingle whose judgment I trust in both editorial and preschool decisions; thank you for surpassing my greatest expectations for an editor. To the rest of the ladies on the math editorial team (Jen Brady, Beth Pearson, and Liz Baird), you are all first class! This revision was planned and executed exceptionally well thanks to you three. To the math marketing specialists Jonathan Cottrell and Jen Wreyford, thank you for helping reps tell my story: you both are outstanding at your jobs. To Kerry Weinstein, thank you for your attention to detail. To the art and illustration folks (Jennifer MacMillan, Sandra Rigby, and Dennis Ormond), thank you for bringing to life all of the sketches and figures. And finally, I'd like to thank all of the Wiley reps: thank you for your commitment to my series and your tremendous efforts to get professors to adopt this book for their students.

I would also like to thank all of the contributors who helped us make this our even better book. I'd first like to thank Mark McKibben. He is known as the author of the solutions manuals that accompany this series, but he is much more than that. Mark, thank you for making this series a priority, for being so responsive, and most of all for being my "go-to" person to think through ideas. I'd also like to especially thank Jodi B.A. McKibben who is a statistician and teamed with Mark to develop the new regression material. I'd like to thank Steve Davis who was the inspiration for the Inquiry-Based Learning Projects and a huge thanks to Lyn Riverstone who developed all of the IBLPs. Special thanks to Laura Watkins for finding applications that are real and timely and to Ricki Alexander for updating all of the Technology Tips. I'd also like to thank Becky Schantz for her environmental problems (I now use AusPens because of Becky).

I'd also like to thank the following reviewers whose input helped make this book even better.

Aaron Anderson, Hillsborough Community College
Bernadette Antkoviak, Harrisburg Area Community College
Jan Archibald, Ventura College
Shari Beck, Navarro College
Patricia K. Bezona, Valdosta State University
Connie Buller, Metropolitan Community College
James Carolan, Wharton County Junior College
Diane Cook, Collegiate High School at Northwest Florida State College
Doris C. Cowan, Polk State College
Jean Davis, Texas State University

Nerissa Felder, Polk State College
Sunshine Gibbons, Southeast Missouri State University
Mehran Hassanpour, South Texas College
Tom Hayes, Montana State University - Bozeman
Celeste Hernandez, Richland College
Carolyn Horseman, Polk State College
Dianne Marquart, Valdosta State University
Maria Luisa Mendez, Laredo Community College
Lily Rai, South Texas College
Leela Rakesh, Central Michigan University
Denise Reid, Valdosta State University
Linda Tansil, Southeast Missouri State University

And a special thanks to our student reviewer Luis Suarez del Rio.

Table of Contents

高 2 Graphs 180
2.1 Basic Tools: Cartesian Plane, Distance, and Midpoint 182
2.2 Graphing Equations: Point-Plotting, Intercepts, and Symmetry 190
2.3 Lines 204
2.4 Circles 221
2.5* Linear Regression: Best Fit 230

Inquiry-Based Learning Project 257 | Modeling Our World 258 | Review 260 | Review Exercises 261 | Practice Test 264 | Cumulative Test 265

үวоұsıədns/eu!!sn!̣ ичо|

Focus on Sport/Getty Images
4 Polynomial and Rational Functions
374
4.1 Quadratic Functions 376
4.2 Polynomial Functions of Higher Degree 394
4.3 Dividing Polynomials: Long Division and Synthetic Division 410
4.4 The Real Zeros of a Polynomial Function 419
4.5 Complex Zeros: The Fundamental Theorem of Algebra 435
4.6 Rational Functions 445

Cumulative Test 477

5 Exponential and Logarithmic Functions
 478

5.1 Exponential Functions and Their Graphs 480
5.2 Logarithmic Functions and Their Graphs 496
5.3 Properties of Logarithms 512
5.4 Exponential and Logarithmic Equations 521
5.5 Exponential and Logarithmic Models 532
Inquiry-Based Learning Project 544 | Modeling Our World 545 |
Review 547 | Review Exercises 549 | Practice Test 552 |
Cumulative Test 553
6 Trigonometric Functions
554
6.1 Angles, Degrees, and Triangles 556
6.2 Definition 1 of Trigonometric Functions: Right Triangle Ratios 574
6.3 Applications of Right Triangle Trigonometry: Solving Right Triangles 589
6.4 Definition 2 of Trigonometric Functions: Cartesian Plane 603
6.5 Trigonometric Functions of Nonacute Angles 619
6.6 Radian Measure and Applications 635
6.7 Definition 3 of Trigonometric Functions: Unit Circle Approach 653
6.8 Graphs of Sine and Cosine Functions 663
6.9 Graphs of Other Trigonometric Functions 693

Inquiry-Based Learning Project	712	\| Modeling Our World	713 \|
Review 714 \| Review Exercises	722 \| Practice Test	$726 \mid$	
Cumulative Test	727		

Paul J.Richards/AFP/Getty Images

7 Analytic Trigonometry 728
7.1 Basic Trigonometric Identities 730
7.2 Verifying Trigonometric Identities 741
7.3 Sum and Difference Identities 751
7.4 Double-Angle Identities 765
7.5 Half-Angle Identities 773
7.6 Product-to-Sum and Sum-to-Product Identities 784
7.7 Inverse Trigonometric Functions 793
7.8 Trigonometric Equations 815
Inquiry-Based Learning Project 832 | Modeling Our World 833
Review 834 | Review Exercises 837 | Practice Test 842 |
Cumulative Test 843
Additional Topics in Trigonometry844
8.1 Oblique Triangles and the Law of Sines 846
8.2 The Law of Cosines 861
8.3 The Area of a Triangle 872
8.4 Vectors 881
8.5 The Dot Product 896
8.6 Polar (Trigonometric) Form of Complex Numbers 905
8.7 Products, Quotients, Powers, and Roots of Complex Numbers; DeMoivre's Theorem 915
8.8 Polar Equations and Graphs 927
Inquiry-Based Learning Project 943 | Modeling Our World 944 |
Review 945 | Review Exercises 949 | Practice Test 952 |
Cumulative Test 953
9 Systems of Linear Equations and Inequalities 954
9.1 Systems of Linear Equations in Two Variables 956
9.2 Systems of Linear Equations in Three Variables 973
9.3 Partial Fractions 986
9.4 Systems of Linear Inequalities in Two Variables 998
9.5 The Linear Programming Model 1010
Inquiry-Based Learning Project 1018 | Modeling Our World 1019
Cumulative Test 1027
10 Matrices 1028
10.1 Matrices and Systems of Linear Equations 1030
10.2 Matrix Algebra 1053
10.3 Matrix Equations; The Inverse of a Square Matrix 1067
10.4 The Determinant of a Square Matrix and Cramer's Rule 1081
Inquiry-Based Learning Project 1096 | Modeling Our World 1097 |
Review 1099 | Review Exercises 1102 | Practice Test 1105 | Cumulative Test 1107

A BASIC STRATEGY FOR BLACKJACK

11 Analytic Geometry and Systems of Nonlinear Equations and Inequalities 1108

11.1 Conic Basics 1110
11.2 The Parabola 1113
11.3 The Ellipse 1127
11.4 The Hyperbola 1140
11.5 Systems of Nonlinear Equations 1153
11.6 Systems of Nonlinear Inequalities 1164
11.7 Rotation of Axes 1172
11.8 Polar Equations of Conics 1183
11.9 Parametric Equations and Graphs 1194
Inquiry-Based Learning Project 1203 | Modeling Our World 1204
Review 1205 | Review Exercises 1209 | Practice Test 1213 |
Cumulative Test 1215
12 Sequences, Series, and Probability 1216
12.1 Sequences and Series 1218
12.2 Arithmetic Sequences and Series 1229
12.3 Geometric Sequences and Series 1238
12.4 Mathematical Induction 1250
12.5 The Binomial Theorem 1255
12.6 Counting, Permutations, and Combinations 1263
12.7 Probability 1273
Inquiry-Based Learning Project 1283 | Modeling Our World 1285
Review 1286 | Review Exercises 1288 | Practice Test 1292 |
Cumulative Test 1293
Answers to Odd Numbered Exercises 1295
Applications Index 1389
Subject Index 1394

A Note from the Author to the Student

Iwrote this text with careful attention to ways in which to make your learning experience more successful. If you take full advantage of the unique features and elements of this textbook, I believe your experience will be fulfilling and enjoyable. Let's walk through some of the special book features that will help you in your study of algebra and trigonometry.

Prerequisites and Review (Chapter 0)

A comprehensive review of prerequisite knowledge (intermediate algebra topics) in Chapter 0 provides a brush up on knowledge and skills necessary for success in the course.

Clear, Concise, and Inviting Writing

Special attention has been made to present an engaging, clear, precise narrative in a layout that is easy to use and designed to reduce any math anxiety you may have.

An opening vignette, flow chart, list of chapter sections, and chapter learning objectives give you an overview of the chapter.

Skills and Conceptual Objectives

For every section, objectives are further divided by skills and concepts so you can see the difference between solving problems and truly understanding concepts.

Examples

Examples pose a specific problem using concepts already presented and then work through the solution. These serve to enhance your understanding of the subject matter.

Your Turn

Immediately following many examples, you are given a similar problem to reinforce and check your understanding. This helps build confidence as you progress in the chapter. These are ideal for in-class
activity or for preparing for homework later. Answers are provided in the margin for a quick check of your work.

Common Mistake

A common misunderstanding is to interpret the notation $f(x+1)$ as a sum: $f(x+1) \neq f(x)+f(1)$.

(1) Correct

Write the original function.

$$
f(x)=x^{2}-3 x
$$

Replace the argument x with a placeholder.

$$
f(\square)=(\square)^{2}-3(\square)
$$

Substitute $x+1$ for the argument.

$$
f(x+1)=(x+1)^{2}-3(x+1)
$$

Eliminate the parentheses.

$$
f(x+1)=x^{2}+2 x+1-3 x-3
$$

Combine like terms.

$$
f(x+1)=x^{2}-x-2
$$

Xincorrect

The ERROR is in interpreting the notation as a sum.

$$
f(x+1) \neq f(x)+f(1)
$$

$$
\neq x^{2}-3 x-2
$$

Parallel Words and Math

This text reverses the common textbook presentation of examples by placing the explanation in words on the left and the mathematics in parallel on the right. This makes it easier for students to read through examples as the material flows more naturally from left to right and as commonly presented in class.

Eliminate the parentheses inside the first set of brackets.

Eliminate the brackets in the numerator.

Combine like terms.

Factor the numerator.
Divide out the common factor, h.

$$
=\frac{h(2 x+h-1)}{h}
$$

- YOUR TURN Evaluate the difference quotient for $f(x)=x^{2}-1$.

Common Mistake/ Correct vs. Incorrect

In addition to standard examples, some problems are worked out both correctly and incorrectly to highlight common errors students make. Counter examples like these are often an effective learning approach for many students.

EXAMPLE 9 Evaluating the Difference Quotient

For the function $f(x)=x^{2}-x$, find $\frac{f(x+h)-f(x)}{h}, h \neq 0$.
Solution:
Use placeholder notation for the function $f(x)=x^{2}-x . \quad f(\square)=(\square)^{2}-(\square)$

Calculate $f(x+h)$.	$f(x+h)=(x+h)^{2}-(x+h)$
Write the difference quotient.	$\underline{f(x+h)-f(x)}$

Let $f(x+h)=(x+h)^{2}-(x+h)$ and $f(x)=x^{2}-x$.

$$
\frac{f(x+h)-f(x)}{h}=\frac{[\overbrace{(x+h)^{2}-(x+h)}^{f(x+h)}]-[\overbrace{x^{2}-x}^{f(x)}]}{h} \quad h \neq 0
$$

$$
=2 x+h-1 \quad h \neq 0
$$

Words	MATH
Write the interest formula for compounding continuously.	$A=P e^{r t}$
Let $A=2 P$ (investment doubles).	$2 P=P e^{r t}$
Divide both sides of the equation by P.	$2=e^{r t}$
Take the natural log of both sides of the equation.	$\ln 2=\ln e^{r t}$
Simplify the right side by applying the property $\ln e^{x}=x$.	$\ln 2=r t$
Divide both sides by r.	$t=\frac{\ln 2}{r}$
	$t \approx \frac{0.7}{r}$

Study Tips and
 Caution Notes

These marginal reminders call out important hints or warnings to be aware of related to the topic or problem.

Study Tip

The largest number of zeros a polynomial can have is equal to the degree of the polynomial.

```
-CAUTION
```

$f \circ g \neq f \cdot g$

Technology Tips

These marginal notes provide problem solving instructions and visual examples using graphing calculators.

Video icons

Video icons appear on all chapter and section introductions, chapter and section reviews, as well as selected examples throughout the chapter to indicate that the author has created a video segment for that element. These video clips help you work through the selected examples with the author as your "private tutor."

Joint variation occurs when one quantity is directly proportional to two or more quantities. Combined variation occurs when one quantity is directly proportional to one or more quantities and inversely proportional to one or more other quantities.

EXAMPLE 9 Evaluating the Difference Quotient

For the function $f(x)=x^{2}-x$, find $\frac{f(x+h)-f(x)}{h}, h \neq 0$.

Solution:

Use placeholder notation for the function $f(x)=x^{2}-x . \quad f(\square)=(\square)^{2}-(\square)$

Section	Concept	Key lieas/Formulas
3.1	Functions	
	Relations and functions	All functions are relations, but not all relations are functions.
	Functions defined by equations	A vertical line can intersect a function in at most one point.
	Function notation	Placeholder notation: $f(x)=3 x^{2}-6 x+2 \quad f(\square)=3(\square)^{2}-6(\square)+2$ Difference quotient: $\frac{f(x+h)-f(x)}{h} ; h \neq 0$

SKILLS
In Exercises 1-16, determine whether the given relation is a function. If it is a function, determine whether it is a one-to-one function.

65. Temperature. The equation used to convert from degree Celsius to degrees Fahrenheit is $f(x)=\frac{9}{3} x+32$. Determine the inverse function $f^{-1}(x)$. What does the inverse function represent?
66. Temperature. The equation used to convert from degrees Fahrenheit to degress Celsius is $C(x)=\frac{5}{9}(x-32)$. Fahrenheit odegrees
Determine the invers
function represent?
67. Budget. The Richmon
the Head of he Charle
figure out how figure out how mucl
per boat for the first per boat for the first
boat. Find the cost f fi
number of boats

Security, write a function $E(x)$ that expresses the student take-home pay each week. Find the inverse function $E^{-1}(x)$. What does the inverse function tell you?
70. Salary. A grocery store pays you $\$ 8$ per hour for the first 40 hours per week and time and a half for overtime. Write a
piecewise-defined function that represents your weckly earning piecewise-defined function that represents your weekly earning
$E(x)$ as a function of the number of hours worked x. Find the inverse function $E^{-1}(x)$. What does the inverse function tell you

Six Different Types of Exercises

Every text section ends with Skills, Applications, Catch the Mistake, Conceptual, Challenge, and Technology exercises. The exercises gradually increase in difficulty and vary in skill and conceptual emphasis. Catch the Mistake exercises increase the depth of understanding and reinforce what you have learned. Conceptual and Challenge exercises specifically focus on assessing conceptual understanding. Technology exercises enhance your understanding and ability using scientific and graphing calculators.

Inquiry-Based Learning Projects

These end of chapter projects enable you to discover mathematical concepts on your own!

Modeling Our World

These unique end-of-chapter exercises provide a fun and interesting way to take what you have learned and model a real world problem. By using climate change as the continuous theme, these exercises can help you to develop more advanced modeling skills with each chapter while seeing how modeling can help you better understand the world around you.

Chapter Review, Review Exercises, Practice Test, Cumulative Test

At the end of every chapter, a summary review chart organizes the key learning concepts in an easy to use one or two-page layout. This feature includes key ideas and formulas, as well as indicating relevant pages and review exercises so that you can quickly summarize a chapter and study smarter. Review Exercises, arranged by section heading, are provided for extra study and practice. A Practice Test, without section headings, offers even more self-practice before moving on. A new Cumulative Test feature offers study questions based on all previous chapters' content, thus helping you build upon previously learned concepts.

Algebra and Trigonometry

ARITHMETIC OPERATIONS

$a b+a c=a(b+c)$	$\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$	$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$
$a\left(\frac{b}{c}\right)=\frac{a b}{c}$	$\frac{a-b}{c-d}=\frac{b-a}{d-c}$	$\frac{a b+a c}{a}=b+c, a \neq 0$

ExpONENTS AND RADICALs

$a^{0}=1, a \neq 0$
$\frac{a^{x}}{a^{y}}=a^{x-y}$

$$
\left(a^{x}\right)^{y}=a^{x y}
$$

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}} \\
& \sqrt{a}=a^{1 / 2} \\
& \sqrt[n]{a}=a^{1 / n}
\end{aligned}
$$

$$
\sqrt[n]{a^{m}}=a^{m / n}=(\sqrt[n]{a})^{m}
$$

$$
a^{x} a^{y}=a^{x+y}
$$

$$
(a b)^{x}=a^{x} b^{x}
$$

SpECIAL FACTORIZATIONS

1. $|x|=\left\{\begin{array}{cc}x & \text { if } x \geq 0 \\ -x & \text { if } x>0\end{array}\right.$
2. If $|x|=c$, then $x=c$ or $x=-c$. $(c>0)$
3. If $|x|<c$, then $-c<x<c$. $(c>0)$
4. If $|x|>c$, then $x<-c$ or $x>c .(c>0)$

Properties of Logarithms

1. $\log _{b}(M N)=\log _{b} M+\log _{b} N$
2. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
3. $\log _{b} M^{p}=p \log _{b} M$
4. $\log _{b} M=\frac{\log _{a} M}{\log _{a} b}=\frac{\ln M}{\ln b}=\frac{\log M}{\log b}$
5. $\log _{b} b^{x}=x ; \ln e^{x}=x$
6. $b^{\log _{b} x}=x ; e^{\ln x}=x \quad x>0$
7. Difference of two squares:
$A^{2}-B^{2}=(A+B)(A-B)$
8. Perfect square trinomials:
$A^{2}+2 A B+B^{2}=(A+B)^{2}$ $A^{2}-2 A B+B^{2}=(A-B)^{2}$
9. Sum of two cubes:
$A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$
10. Difference of two cubes:
$A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$

SYMMETRY

y-Axis Symmetry

x-Axis Symmetry

Origin Symmetry

FORMULAS/ EQUATIONS

Distance Formula The distance from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
Midpoint Formula
The midpoint of the line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Standard Equation of a Circle

Slope Formula

Slope-Intercept Equation of a Line

Point-Slope
Equation of a Line
Quadratic Formula

The standard equation of a circle of radius r with center at (h, k) is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

The slope m of the line containing the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\text { slope }(m)=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad\left(x_{1} \neq x_{2}\right)
$$

m is undefined if $x_{1}=x_{2}$
The equation of a line with slope m and y-intercept $(0, b)$ is $y=m x+b$

The equation of a line with slope m containing the point $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$
The solutions of the equation $a x^{2}+b x+c=0, a \neq 0$, are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ If $b^{2}-4 a c>0$, there are two distinct real solutions.
If $b^{2}-4 a c=0$, there is a repeated real solution.
If $b^{2}-4 a c<0$, there are two complex solutions (complex conjugates).

CEOMETRY FORMULAS

Circle

Triangle

Rectangle

Rectangular Box

Sphere

Right Circular Cylinder

$r=$ Radius, $A=$ Area, $C=$ Circumference
$A=\pi r^{2} \quad C=2 \pi r$
$b=$ Base, $h=$ Height (Altitude), $A=$ area
$A=\frac{1}{2} b h$
$l=$ Length, $w=$ Width, $A=$ area, $P=$ perimeter
$A=l w \quad P=2 l+2 w$
$l=$ Length, $w=$ Width, $h=$ Height, $V=$ Volume, $S=$ Surface area
$V=l w h \quad S=2 l w+2 l h+2 w h$
$r=$ Radius, $V=$ Volume, $S=$ Surface area
$V=\frac{4}{3} \pi r^{3} \quad S=4 \pi r^{2}$
$r=$ Radius, $h=$ Height, $V=$ Volume, $S=$ Surface area
$V=\pi r^{2} h \quad S=2 \pi r^{2}+2 \pi r h$

CONVERSION TABLE

1 centimeter ≈ 0.394 inch
1 meter ≈ 39.370 inches

$$
\approx 3.281 \text { feet }
$$

1 kilometer ≈ 0.621 mile 1 liter ≈ 0.264 gallon
1 newton ≈ 0.225 pound

$$
\begin{aligned}
1 \text { joule } & \approx 0.738 \text { foot-pound } \\
1 \text { gram } & \approx 0.035 \text { ounce } \\
1 \text { kilogram } & \approx 2.205 \text { pounds } \\
1 \text { inch } & \approx 2.540 \text { centimeters } \\
1 \text { foot } & \approx 30.480 \text { centimeters } \\
& \approx 0.305 \text { meter }
\end{aligned}
$$

1 mile ≈ 1.609 kilometers
1 gallon ≈ 3.785 liters
1 pound ≈ 4.448 newtons
1 foot-lb ≈ 1.356 Joules 1 ounce ≈ 28.350 grams
1 pound ≈ 0.454 kilogram

Constant Function

Linear Function

Quadratic Function
Polynomial Function

Rational Function

Exponential Function
Logarithmic Function

$$
f(x)=b
$$

$$
f(x)=m x+b, \text { where } m \text { is the slope and } b \text { is the } y \text {-intercept }
$$

$$
f(x)=a x^{2}+b x+c, a \neq 0 \text { or } f(x)=a(x-h)^{2}+k \text { parabola vertex }(h, k)
$$

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

$$
R(x)=\frac{n(x)}{d(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

$$
f(x)=b^{x}, b>0, b \neq 1
$$

$$
f(x)=\log _{\mathrm{b}} x, b>0, b \neq 1
$$

Graphs of Common Functions

Constant Function

Identity Function

Absolute Value Function

Square Root Function

Square Function

Cube Function

Exponential Function

TRANSFORMATIONS

In each case, c represents a positive real number.

Function
Vertical translations $\left\{\begin{array}{l}y=f(x)+c \\ y=f(x)-c\end{array}\right.$

Draw the graph of f and:

Horizontal translations $\left\{\begin{array}{l}y=f(x-c) \\ y=f(x+c)\end{array}\right.$ $\begin{cases}y=-f(x) & \text { Reflect } f \text { about the } x \text {-axis. } \\ y=f(-x) & \text { Reflect } f \text { about the } y \text {-axis. }\end{cases}$

Shift f upward c units. Shift f downward c units.

Shift f to the right c units. Shift f to the left c units.

Reflections

HERON'S FORMULA FOR AREA

If the semiperimeter, s, of a triangle is

$$
s=\frac{a+b+c}{2}
$$

then the area of that triangle is
$A=\sqrt{s(s-a)(s-b)(s-c)}$

0

Prerequisites and Review

Would you be able to walk successfully along a tightrope? Most people probably would say no because the foundation is
 "shaky." Would you be able to walk successfully along a beam (4 inches wide)? Most people would probably say yes-even though for some of us it is still challenging. Think of this chapter as the foundation for your walk. The more solid your foundation is now, the more successful your walk through College Algebra will be.

The purpose of this chapter is to review concepts and skills that you already have learned in a previous course. Mathematics is a cumulative subject in that it requires a solid foundation to proceed to the next level. Use this chapter to reaffirm your current knowledge base before jumping into the course.

IN THIS CHAPTER real numbers, integer exponents, and scientific notation will be discussed, followed by rational exponents and radicals. Simplification of radicals and rationalization of denominators will be reviewed. Basic operations such as addition, subtraction, and multiplication of polynomials will be discussed followed by a review of how to factor polynomials. Rational expressions will be discussed and a brief overview of solving simple algebraic equations will be given. After reviewing all of these aspects of real numbers, this chapter will conclude with a review of complex numbers.

PREREQUISITES AND REVIEW

	0.2 Integer Exponents and Scientific Notation	0.3 Polynomials: Basic Operations	0.4 Factoring Polynomials	0.5 Rational Expressions	0.6 Rational Exponents and Radicals	0.7 Complex Numbers
- The Set of Real Numbers - Approximations: Rounding and Truncation - Order of Operations - Properties of Real Numbers	- Integer Exponents - Scientific Notation	- Adding and Subtracting Polynomials - Multiplying Polynomials - Special Products	- Greatest Common Factor - Factoring Formulas: Special Polynomial Forms - Factoring a Trinomial as a Product of Two Binomials - Factoring by Grouping - A Strategy for Factoring Polynomials	- Rational Expressions and Domain Restrictions - Simplifying Rational Expressions - Multiplying and Dividing Rational Expressions - Adding and Subtracting Rational Expressions - Complex Rational Expressions	- Square Roots - Other (n th) Roots - Rational Exponents	- The Imaginary Unit, i - Adding and Subtracting Complex Numbers - Multiplying Complex Numbers - Dividing Complex Numbers - Raising Complex Numbers to Integer Powers

LEARNING OBJECTIVES

Understand that rational and irrational numbers together constitute the real numbers.

- Apply properties of exponents.
- Perform operations on polynomials.
- Factor polynomials.
- Simplify expressions that contain rational exponents.
- Simplify radicals.
- Write complex numbers in standard form.

0.1

SKILLS OBJECTIVES

- Classify real numbers as rational or irrational.

Round or truncate real numbers.
Simplify expressions using correct order of operations.
Evaluate algebraic expressions.
Apply properties of real numbers.

CONCEPTUAL OBJECTIVES

Understand that rational and irrational numbers are mutually exclusive and complementary subsets of real numbers.

- Learn the order of operations for real numbers.

The Set of Real Numbers

A set is a group or collection of objects that are called members or elements of the set. If every member of set B is also a member of set A, then we say B is a subset of A and denote it as $B \subset A$.

For example, the starting lineup on a baseball team is a subset of the entire team. The set of natural numbers, $\{1,2,3,4, \ldots\}$, is a subset of the set of whole numbers, $\{0,1,2,3,4, \ldots\}$, which is a subset of the set of integers, $\{\ldots,-4,-3,-2,-1,0,1,2,3, \ldots\}$, which is a subset of the set of rational numbers, which is a subset of the set of real numbers. The three dots, called an ellipsis, indicate that the pattern continues indefinitely.

If a set has no elements, it is called the empty set, or null set, and is denoted by the symbol \varnothing. The set of real numbers consists of two main subsets: rational and irrational numbers.

DEFINITION
 Rational Number

A rational number is a number that can be expressed as a quotient (ratio) of two integers, $\frac{a}{b}$, where the integer a is called the numerator and the integer b is called the denominator and where $b \neq 0$.

Rational numbers include all integers or all fractions that are ratios of integers. Note that any integer can be written as a ratio whose denominator is equal to 1 . In decimal form, the rational numbers are those that terminate or are nonterminating with a repeated decimal pattern, which is represented with an overbar. Those decimals that do not repeat and do not terminate are irrational numbers. The numbers

$$
5, \quad-17, \quad \frac{1}{3}, \quad \sqrt{2}, \quad \pi, \quad 1.37, \quad 0, \quad-\frac{19}{17}, \quad 3.66 \overline{6}, \quad 3.2179 \ldots
$$

are examples of real numbers, where $5,-17, \frac{1}{3}, 1.37,0,-\frac{19}{17}$, and $3.66 \overline{6}$ are rational numbers, and $\sqrt{2}, \pi$, and $3.2179 \ldots$ are irrational numbers. It is important to note that the ellipsis following the last decimal digit denotes continuing in an irregular fashion, whereas the absence of such dots to the right of the last decimal digit implies the decimal expansion terminates

Rational Number (FRACtion)	Calculator Display	Decimal Representation	Description
$\frac{7}{2}$	3.5	3.5	Terminates
$\frac{15}{12}$	1.25	1.25	Terminates
$\frac{2}{3}$	0.666666666	$0 . \overline{6}$	Repeats
$\frac{1}{11}$	0.09090909	$0 . \overline{09}$	Repeats

Notice that the overbar covers the entire repeating pattern. The following figure and table illustrate the subset relationship and examples of different types of real numbers.

Study Tip

Every real number is either a rational number or an irrational number.

Symbol	Name	Description	Examples
\mathbb{N}	Natural numbers	Counting numbers	1, 2, 3, 4, 5, ..
W	Whole numbers	Natural numbers and zero	0, 1, 2, 3, 4, 5,
\mathbb{Z}	Integers	Whole numbers and negative natural numbers	$\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots$
\mathbb{Q}	Rational numbers	Ratios of integers: $\frac{a}{b}(b \neq 0)$ - Decimal representation terminates, or - Decimal representation repeats	$-17,-\frac{19}{7}, 0, \frac{1}{3}, 1.37,3.66 \overline{6}, 5$
II	Irrational numbers	Numbers whose decimal representation does not terminate or repeat	$\sqrt{2}, 1.2179 \ldots, \pi$
\mathbb{R}	Real numbers	Rational and irrational numbers	$\pi, 5,-\frac{2}{3}, 17.25, \sqrt{7}$

Since the set of real numbers can be formed by combining the set of rational numbers and the set of irrational numbers, then every real number is either rational or irrational. The set of rational numbers and the set of irrational numbers are both mutually exclusive (no shared elements) and complementary sets. The real number line is a graph used to represent the set of all real numbers.

- Answer:

Rational: $-\frac{7}{3}, 5.999 \overline{9}, 12,0,-5.27$
Irrational: $\sqrt{5}, 2.010010001 \ldots$

Study Tip

When rounding, look to the right of the specified decimal place and use that digit (do not round that digit first). 5.23491 rounded to two decimal places is 5.23 (do not round the 4 to a 5 first).

■ Answer: a. Truncation: 23.02
b. Rounding: 23.02

- Answer: a. Truncation: - 2.3818
b. Rounding: -2.3819

EXAMPLE 1 Classifying Real Numbers

Classify the following real numbers as rational or irrational:

$$
-3, \quad 0, \quad \frac{1}{4}, \quad \sqrt{3}, \quad \pi, \quad 7.51, \quad \frac{1}{3}, \quad-\frac{8}{5}, \quad 6.6666 \overline{6}
$$

Solution:

Rational: $-3, \quad 0, \frac{1}{4}, 7.51, \frac{1}{3}, \quad-\frac{8}{5},-6.6666 \overline{6} \quad$ Irrational: $\sqrt{3}, \pi$

- YOUR TURN Classify the following real numbers as rational or irrational:

$$
-\frac{7}{3}, 5.999 \overline{9}, 12,0,-5.27, \sqrt{5}, 2.010010001 \ldots
$$

Approximations: Rounding and Truncation

Every real number can be represented by a decimal. When a real number is in decimal form, it can be approximated by either rounding off or truncating to a given decimal place. Truncation is "cutting off" or eliminating everything to the right of a certain decimal place. Rounding means looking to the right of the specified decimal place and making a judgment. If the digit to the right is greater than or equal to 5 , then the specified digit is rounded up, or increased by one unit. If the digit to the right is less than 5 , then the specified digit stays the same. In both of these cases all decimal places to the right of the specified place are removed.

EXAMPLE 2 Approximating Decimals to Two Places

Approximate 17.368204 to two decimal places by
a. truncation
b. rounding

Solution:

a. To truncate, eliminate all digits to the right of the 6 .
b. To round, look to the right of the 6 .

Because " 8 " is greater than 5 , round up (add 1 to the 6).

- YOUR TURN Approximate 23.02492 to two decimal places by
a. truncation
b. rounding

EXAMPLE 3 Approximating Decimals to Four Places

Approximate 7.293516 to four decimal places by
a. truncation b. rounding

Solution:

The " 5 " is in the fourth decimal place.
a. To truncate, eliminate all digits to the right of 5 .
7.2935
b. To round, look to the right of the 5 .

Because " 1 " is less than 5, the 5 remains the same.
7.2935

■ YOUR TURN Approximate -2.381865 to four decimal places by
a. truncation
b. rounding

It is important to note that rounding and truncation sometimes yield the same approximation (Example 3), but not always (Example 2).

Order of Operations

Addition, subtraction, multiplication, and division are called arithmetic operations. The results of these operations are called the sum, difference, product, and quotient, respectively. These four operations are summarized in the following table.

Operation	Notation	Result
Addition	$a+b$	Sum
Subtraction	$a-b$	Difference
Multiplication	$a \cdot b$ or $a b$ or $(a)(b)$	Product
Division	$\frac{a}{b}$ or $a / b(b \neq 0)$	Quotient (Ratio)

Since algebra involves variables such as x, the traditional multiplication sign \times is not used. Three alternatives are shown in the preceding table. Similarly, the arithmetic sign for division \div is often represented by vertical or slanted fractions.

The symbol $=$ is called the equal sign, and is pronounced "equals" or "is," and it implies that the expression on one side of the equal sign is equivalent to (has the same value as) the expression on the other side of the equal sign.

Words

The sum of seven and eleven equals eighteen:
Three times five is fifteen:
Four times six equals twenty-four:
Eight divided by two is four:
Three subtracted from five is two:

Math

$7+11=18$
$3 \cdot 5=15$
$4(6)=24$
$\frac{8}{2}=4$
$5-3=2$

When evaluating expressions involving real numbers, it is important to remember the correct order of operations. For example, how do we simplify the expression $3+2 \cdot 5$? Do we multiply first and then add, or add first and then multiply? In mathematics, conventional order implies multiplication first, and then addition: $3+2 \cdot 5=3+10=13$. Parentheses imply grouping of terms, and the necessary operations should always be performed inside them first. If there are nested parentheses, always start with the innermost parentheses and work your way out. Within parentheses follow the conventional order of operations. Exponents are an important part of order of operations and will be discussed in Section 0.2.

Order of operations

1. Start with the innermost parentheses (grouping symbols) and work outward.
2. Perform all indicated multiplications and divisions, working from left to right.
3. Perform all additions and subtractions, working from left to right.
$\begin{array}{ll}\text { ■ Answer: a. } 10 & \text { b. } \frac{3}{16}\end{array}$

EXAMPLE 4 Simplifying Expressions Using the Correct Order of Operations

Simplify the expressions.
a. $4+3 \cdot 2-7 \cdot 5+6$
b. $\frac{7-6}{2 \cdot 3+8}$

Solution (a):
Perform multiplication first.

$$
\begin{aligned}
& 4+\underbrace{3 \cdot 2}_{6}-\underbrace{7 \cdot 5}_{35}+6 \\
= & 4+6-35+6=-19
\end{aligned}
$$

Then perform the indicated additions and subtractions.
Solution (b):
The numerator and the denominator are similar to expressions in parentheses. Simplify these separately first, following the correct order of operations.

Perform multiplication in the denominator first. $\quad \underbrace{\frac{7-6}{2 \cdot 3}+8}_{6}$
Then perform subtraction in the numerator and addition in the denominator.

$$
=\frac{7-6}{6+8}=\frac{1}{14}
$$

■ YOUR TURN Simplify the expressions.
a. $-7+4 \cdot 5-2 \cdot 6+9$
b. $\frac{9-6}{2 \cdot 5+6}$

Parentheses () and brackets [] are the typical notations for grouping and are often used interchangeably. When nesting (groups within groups), use parentheses on the innermost and then brackets on the outermost.

EXAMPLE 5 Simplifying Expressions That Involve Grouping Signs Using the Correct Order of Operations

Simplify the expression $3[5 \cdot(4-2)-2 \cdot 7]$.

Solution:

Simplify the inner parentheses.

$$
3[5 \cdot(4-2)-2 \cdot 7]=3[5 \cdot 2-2 \cdot 7]
$$

Inside the brackets, perform the multiplication
$5 \cdot 2=10$ and $2 \cdot 7=14$.
Inside the brackets, perform the subtraction.
Multiply.

$$
\begin{aligned}
& =3[10-14] \\
& =3[-4] \\
& =-12
\end{aligned}
$$

Algebraic Expressions

Everything discussed until now has involved real numbers (explicitly). In algebra, however, numbers are often represented by letters (such as x and y), which are called variables. A constant is a fixed (known) number such as 5 . A coefficient is the constant that is multiplied by a variable. Quantities within the algebraic expression that are separated by addition or subtraction are referred to as terms.

DEFINITION Algebraic Expression

An algebraic expression is the combination of variables and constants using basic operations such as addition, subtraction, multiplication, and division. Each term is separated by addition or subtraction.

Algebraic Expression	Variable Term	Constant Term	Coefficient
$5 x+3$	$5 x$	3	5

When we know the value of the variables, we can evaluate an algebraic expression using the substitution principle:

```
Algebraic expression: 5x+3
Value of the variable: }x=
Substitute }x=2:\quad5(2)+3=10+3=1
```


EXAMPLE 6 Evaluating Algebraic Expressions

Evaluate the algebraic expression $7 x+2$ for $x=3$.
Solution:

Start with the algebraic expression.	$7 x+2$
Substitute $\boldsymbol{x}=\mathbf{3}$.	$7(\mathbf{3})+2$
Perform the multiplication.	$=21+2$
Perform the addition.	$=23$

- YOUR TURN Evaluate the algebraic expression $6 y+4$ for $y=2$.

In Example 6, the value for the variable was specified in order for us to evaluate the algebraic expression. What if the value of the variable is not specified; can we simplify an expression like $3(2 x-5 y)$? In this case, we cannot subtract $5 y$ from $2 x$. Instead, we rely on the basic properties of real numbers, or the basic rules of algebra.

Properties of Real Numbers

You probably already know many properties of real numbers. For example, if you add up four numbers, it does not matter in which order you add them. If you multiply five numbers, it does not matter what order you multiply them. If you add 0 to a real number or multiply a real number by 1 , the result yields the original real number. Basic properties of real numbers are summarized in the following table. Because these properties are true for variables and algebraic expressions, these properties are often called the basic rules of algebra.

